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Abstract—A recently developed micromechanical theory for the thermo-elastic response of func-
tionally graded composites is further extended to include the inelastic and temperature-dependent
response of the constituent phases. In contrast to currently employed micromechanical approaches
applied to this newly emerging class of materials, which decouple the local and global effects by
assuming the existence of a representative volume element at every point within the composite, the
new theory explicitly couples the local and global effects. Previous thermo-elastic analysis has
demonstrated that such coupling is necessary when: the temperature gradient is large with respect
to the dimension of the inclusion phase ; the characteristic dimension of the inclusion phase is large
relative to the global dimensions of the composite ; and the number of inclusions is small. In these
circumstances, the concept of the representative volume element is no longer applicable and the
standard micromechanical analyses based on this concept produce questionable results. Examples
of composite materials that fall into this category include large-diameter fiber composites such as
SiC/Ti and B/AL Herein, we extend this new approach to include the inelastic and temperature-
dependent response of the constituent phases in order to be able to realistically model functionally
graded metal matrix composites in the presence of large temperature gradients. The inelastic
behavior of the matrix phase is modeled using two inelastic models, namely the Bodner—Partom
unified viscoplasticity theory and the classical incremental plasticity theory. Results are presented
that illustrate the differences between elastic and inelastic analyses, defining under what cir-
cumstances the inclusion of inelastic effects is important. Application of the theory to composites
with thermal barrier coatings demonstrates the utility of the concept of internal temperature man-
agemen! through functional grading of the microstructure using differently-distributed particulate

inclusions.
NOMENCLATURE

Pq,r indices used to identify the cell (p, ¢. r)

o, B,y indices used to identify the subcell (afy)

d?, hy. 1, dimensions of the subcell (¢fy) in the pth unit cell

&, volume of the subcell (afy)

P, 20, 2y local subcell coordinates

ke coefficients of heat conductivity of the material in the subcell (xfy)

T temperature field in the subcell (xfy)

75 temperature at the center of the subcell (afy)

T coefficients in the temperature expansion within the subcell (xf7)

g components of the heat flux vector in the subcell («fy)

ul##n displacement components in the subcell («fy)

wiEh) x, displacement component at the center of the subcell (28y)

oty coefficients associated with the linear terms in the second-order expansion of the subcell dis-
placement {*"

wlPn coefficients associated with the linear terms in the first-order expansion of the subcell dis-
placement 5"

i coeflicients associated with the linear terms in the first-order expansion of the subcell dis-
placement 4

U coefficients associated with the quadratic term x{¥? in the second-order expansion of the subcell

displacement 2{*#
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124524 coefficients associated with the quadratic term x¥? in the second-order expansion of the subcell
displacement u{*”

Wi coefficients associated with the quadratic term x§"? in the second-order expansion of the subcell
displacement u{*#”

e local strain components in the subcell («fy)

o local stress components in the subcell (xfy)

i elements of the stiffness tensor of the material in the subcell (28y)

g elements of the thermal tensor of the material in the subcell (xfy) (products of the stiffness
tensor and the thermal expansion coefficients)

SE average values of the subcell stress components ¢$#? when / = m = n = 0; higher-order stress
components for other values of 7, m, n

Heapy) shear modulus of an isotropic material in the subcell («fy)

e local inelastic strain components in the subcell (xfy) (for viscoplastic materials)

gPahn local plastic strain components in the subcell (o)

e coefficients of the total strain series expansion in the subcell (x87)

rgﬁ‘ffi,),‘,,) coefficients of the stress series expansion in the subcell (2fy)

rﬂ,f,’,’]},, coefficients of the thermal stress series expansion in the subcell (xfy)

gl thermal stress components in the subcell (z8y)

REEY. inelastic strain distribution components in the subcell (xf7y)

P, Legendre polynomial of order »

A= inelastic flow function in the subcell (a87)

Wt plastic work in the subcell («f8y)

A state variable associated with the viscoplastic material in the subcell («fy)

daepm plastic flow function increment of the material in the subcell (x8y)

N, M force and moment resultant vectors

{. INTRODUCTION

Recently, a new concept has evolved for improving the performance of advanced composite
materials that involves tailoring the internal microstructure or architecture of the material.
This idea originated in Japan and has been explored vigorously by Japanese researchers
who have coined the term ““functionally gradient materials” (FGMs) to describe this newly
emerging class of composites (cf. Yamanouchi er al., 1990). The idea involves spatially
grading the properties of the material by using variable spacings between individual
inclusions, as well as by using inclusions with different properties, sizes and shapes. Such
an approach offers a number of advantages over the more traditional methods of tailoring
the compliance of composite materials or structural elements, and opens up new horizons
for novel applications. Grading or tailoring the internal microstructure of a composite
material or a structural component allows the designer to truly integrate both the material
and structural considerations into the final design and final product. This brings the entire
structural design process to the material level in the purest sense, thereby increasing the
number of possible material configurations for specific applications.

Functionally graded composites are ideal candidates for applications involving severe
thermal gradients, ranging from thermal structures in advanced aircraft and aerospace
engines to circuit boards. The potential benefits that may be derived from this new class of
composites have led to increased activities in the areas of processing and materials science
of these materials. However, as discussed by Aboudi er al. (1993), these activities are
seriously handicapped by the lack of appropriate computational strategies for the response
of functionally graded materials that explicitly couple the heterogeneous microstructure of
the material with the global analysis. The standard micromechanical approach used to
analyse the response of this class of materials is to decouple the local and global effects by
assuming the existence of a representative volume element (RVE) at every point within the
composite (cf. Wakashima and Tsukamoto, 1990). In the presence of large material and
field variable gradients, however, this assumption may lead to erroneous results (cf. Hill,
1963 ; Pagano, 1974). As a result of the limitation of the standard micromechanical
approaches, a new micromechanical theory, that explicitly couples the local and global
effects, has been developed and applied to functionally graded composites (FGCs) (Aboudi
et al., 1993, 1994a,b). In particular, this new higher-order theory for functionally graded
materials (HOTFGM) was used to assess the limits of applicability of the standard micro-
mechanical approach in predicting local stresses in the fiber and matrix phases of FGCs
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subjected to a thermal gradient (Pindera er al., 1994). It was shown that the simplified
uncoupled approach is inaccurate when the dimension of the reinforcement phase is large
relative to the dimension of the composite.

The original formulation of the new theory was limited to thermo-elastic analysis of
FGCs involving one dimension along which both the spacings between inclusions and the
applied temperature gradient vary. The properties of the individual phases remained con-
stant with temperature. Therefore, in order to realistically model the response of FGCs
with metallic matrices, the new theory is extended herein to include temperature-dependent
material properties and inelastic response of the individual phases. In particular, two types
of inelastic constitutive theories are employed to model the behavior of the metallic phases.
namely the classical incremental plasticity and the Bodner—Partom unified viscoplasticity
theory. To set the elastic results generated with the original formulation of the theory in
perspective, extensive comparisons between elastic and inelastic predictions are presented
for uniformly and nonuniformly spaced unidirectional SiC/Ti composites subjected to a
through-the-thickness temperature gradient. The comparison includes the internal stress
distributions as well as the inplane force and moment resultants required to keep a composite
plate straight in the presence of a temperature gradient. The incorporation of inelastic
constitutive theories which describe the response of the metallic phases enables one to
identify those regions where inelastic effects cannot be disregarded, especially in the presence
of high thermal and stress gradients. Thus the importance of the inelastic effects on the
overall response of FGCs can now be quantitatively assessed. In addition, the theory is
employed to study the potential of tailoring the microstructure of SiC particulate-reinforced
metallic layers protected by a ceramic thermal barrier coating at the surface exposed to an
elevated temperature. Results are compared with the response of a bi-material and tri-
material plate laminated with homogeneous plies under the same thermal gradient. The
comparison clearly illustrates the advantages that can be derived from the concept of
internal temperature management through embedding of differently-distributed particulate
inclusions in metallic layers subjected to a temperature gradient.

2. ANALYTICAL MODEL

HOTFGM is based on the geometric model of a heterogeneous composite with a finite
thickness H, extending to infinity in the x,—x; plane, and subjected to a temperature
gradient, Fig. 1. The composite is reinforced by periodic arrays of fibers in the direction of
the x, axis or the x; axis, or both. In the direction of the x, axis, hereafter called the
functionally gradient (FG) direction, the fiber spacing between adjacent arrays may vary.
The reinforcing fibers can be either continuous [Fig. 1(a)] or finite-length [Fig. 1(b)]. The
heterogeneous composite is constructed using the basic building block or repeating unit
cell, Fig. 2. This unit cell consists of eight subcells designated by the triplet (2fy). Each
index o, f3, y takes on the values 1 or 2 which indicate the relative position of the given
subcell along the x|, x, and x; axis, respectively. The dimensions of the unit cell along the
x, and x; axes, k), A, and /,, £, are fixed for the given configuration since these are the
periodic directions, whereas the dimensions along the x; axis or the FG direction,
d{,dy’. can vary from unit cell to unit cell. The dimensions of the subcells within a given
cell along the FG direction are designated with a running index p which identifies the cell
number, where p remains constant in the x,—x, plane. For the other two directions, x, and
X, the corresponding indices ¢ and r are introduced. Thus a given cell is designated by the
triplet (p,g.r) for p = 1,2,..., M, where M is the number of cells in the thickness or FG
direction, and an infinite range of ¢ and r due to the periodicity of the composite in the x,
and x, directions.

Itis important to note that the repeating unit cell in the present framework is not taken
to be an RVE whose effective properties can be obtained through local homogenization, as
is done in the standard uncoupled micromechanical approaches based on the concept of
local action (Malvern, 1969). Rather, the RVE herein comprises an entire column of such
cells spanning the thickness of the plate. Thus the principle of local action is not applicable
at the individual cell level, requiring the response of each cell to be explicitly coupled to the
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Fig. 1. Composite with nonperiodic fiber distribution in the x, direction: {(a) unidirectionally
reinforced material ; (b) particulate inclusion-reinforced material. RCS denotes the representative
cross-section.

response of the entire column of cells in the FG direction. This is what is meant by the
statement that the present approach explicitly couples the microstructural details with the
global analysis, and thus sets HOTFGM apart from the standard approaches found in the
literature.

2.1. Outline of the solution technique

The solution of the thermo-mechanical boundary-value problem outlined in the fore-
going in the presence of inelastic and temperature-dependent effects is solved in two steps,
following the general framework for the solution of the corresponding thermo-elastic
problem discussed previously (Aboudi er al., 1993). In the first step, the temperature
distribution in a single column of cells, representative of the composite-at-large, spanning
the FG dimension is determined by solving the heat equation under steady-state conditions
in each cell subject to the appropriate continuity and compatibility conditions. These
conditions ensure that the given cell is indistinguishable from the adjacent cells in the x—
x; plane. The solution to the heat equation is obtained by approximating the temperature
field in each subcell of a repeating unit cell using a quadratic expansion in the local
coordinates X, 7, X centered at the subcell’s mid-point. A higher-order representation
of the temperature field is necessary in order to capture the local effects created by the
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Fig. 2. The repeating unit cell of a composite with nonperiodic fiber distribution in the x, direction.

thermal gradient, the microstructure of the composite and the finite dimension in the FG
direction, in contrast with previous treatments involving fully periodic composite media.
The unknown coefficients associated with each term in the expansion are then obtained by
constructing a system of equations that satisfies the requirements of a standard boundary-
value problem for the given temperature field approximation. That is, the heat equation is
satisfied in a volumetric sense, and the thermal and heat flux continuity conditions within
a given cell, as well as between a given cell and adjacent cells, are imposed in an average
sense.

Given the temperature distribution in a single column of cells representative of the
composite-at-large, internal displacements, strains and stresses are subsequently generated
by solving the equilibrium equations in each cell subject to appropriate continuity and
boundary conditions. The solution is obtained by approximating the displacement field in
the FG direction in each subcell using a quadratic expansion in local coordinates within
the subcell. The displacement field in the x, and x, directions, on the other hand, is
approximated using linear expansion in local coordinates to reflect the periodic character
of the composite’s microstructure in the x,—x; plane. The unknown coefficients associated
with each term in the expansion are obtained by satisfying the appropriate field equations
in a volumetric sense, together with the boundary conditions and continuity of dis-
placements and tractions between individual subcells of a given cell, and between adjacent
cells. The continuity conditions are imposed in an average sense. This results in a coupled
system of equations involving the unknown coefficients in the displacement representation
for each cell. The presence of temperature-dependent and inelastic effects requires an
incremental solution technique of these equations at each step of applied loading since
integrals of plastic strain distributions, which depend implicitly on the unknown coefficients,
appear in the system of equations.

An outline of the governing equations for the temperature and displacement fields in
the individual subcells within the column of cells considered in solving the outlined bound-
ary-value problem is given in the sequel. A detailed derivation of these equations has been
presented in Appendices A and B in Aboudi er al. (1994b), and thus will not be repeated
here so as not to obscure the basic concepts by the involved algebraic manipulations.

2.2. Thermal analysis
Suppose that the composite material occupies the region 0 < x; < H, |x,| < oo,
|x3] < 0. Let M denote the number of cells in the interval 0 < x, < H, where H=2X
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dP+dey, p=1,.... M. For p=2...., M—1 the cells are internal, whereas for p = 1
and p = M they are boundary cells. The triplet (p,q,r) used to identify the pth cell is
implicitly assumed to be attached to the field variables associated with this cell, and thus is
not explicitly displayed for notational simplicity.

Let the composite be subjected to the temperature T+ on the top surface (x; = 0) and
to Ty on the bottom surface (x, = H). For a steady-state situation, the heat flux field in the
material occupying the subcell (2fy) in the region defined by |%{*| < d¥/2. |*{"] < hy/2,
|2§°] < 1,/2 of the pth cell must satisfy the equation :

SV 0,957 +83457 = 0 (1)
where 8, = /0%, ¢, = ¢/éx¥", 0, = ¢/6x{". The components of the heat flux vector ¢
in this subcell are derived from the temperature field as follows:

gt = — kT (i = 1,2,3;n0 sum) )

where &% are the coefficients of heat conductivity of the material occupying the subcell
(2fy), and no summation is implied by repeated Greek letters in the above and henceforth.

The temperature distribution 7% in the subcell (xfy) of the pth cell is approximated
by a second order expansion in the local coordinates £, %', and ¢ as follows:

(p)2

9 7 ", 2 h3 . )2 [2 ¥
T(llf*,') — T})ﬁr[fﬂ +'\‘,-(]2’ T(IX/f:') +;<3_)—[1‘a)- 0 ‘r) Tkzatﬂ;’) +§(3X‘2”" L I)T(;(I?H +;<3f§.h _ 4)7‘&’#”)

(3)
where T§#), which is the temperature at the center of the subcell, and 70 (i =1,..., 4)
are unknown coeflicients which are determined from conditions that will be outlined

subsequently.

Given the five unknown quantities (T§¢#", ..., T%"") associated with each subcell, and
eight subcells within each unit cell, 40M unknown quantities must be determined for a
composite with M rows of cells in the FG direction. These unknown quantities are deter-
mined by first satisfying the heat conduction equation, as well as the first and second
moments of this equation in each subcell. This is carried out in a volumetric sense for each
subcell in view of the temperature field approximation given by eqn (3). For this reason the
first and second moments must be considered. Subsequently, continuity of heat flux and
temperature is imposed in an average sense at the interfaces separating adjacent subcells,
as well as neighboring cells. Fulfilment of these field equations and continuity conditions,
in conjunction with the imposed thermal boundary conditions at the top and bottom
surfaces of the composite, provides the necessary 40M equations given below for the 40M
unknown coefficients in the temperature field expansion. Details of the derivation of these
equations have been provided by Aboudi et al. (1993, 1994b).

Relations arising from the heat conduction equation (for p =1, 2,...,M).
k ‘lxﬁ"‘) T(giﬁ:') + k'f!‘v‘) T(}%/f:«') + ngIf:s) T(fﬁ” =0. (4)

Relations arising from the heat flux continuity requirements. Between individual subcells
(forp=1,2,....M)

BkG D TED 4 kS TE = (5)
/] ‘1\,(31/51 )Taa([fl) _}_[2 kgu/f?) T(40(/f2) — 0 (6)

Between neighboring cells (for p = 2,..., M)
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s ao

3k(21/iv) Tglﬁr) + 3k(31ﬁv) Tﬁw”) + E g [k(f””’ T(32/fw) _|_kg2/9~,1) T£2/fy)] +
1

3dy-"

QB T2 L QB T — Ve 4
2 g BEPTERETE 0

k(l2/i>') T(I2Bv) ,k(llﬂr) T(l2/f:«')|(pfl,q,r)] =0 (7)
k(llﬁv) T(Ilﬂ,) = %k(lzﬁ’)T(f”‘) +§k<12/1,) T(llﬁ,)|(p 1.4.r) +Zd<21’)[k(22ﬁ,)ngﬂw) +k§2’3” Tﬂfﬁ’)] —

24y VI TR 4 k@ TR0 1e0 - (8)

Relations arising from the thermal continuity requirements. Between individual subcells
(forp=1,2,...,.M)

T4 +% dp i +%d§p)2 TOR = @M _% dp T +%d§”)2 T38) ©)
Tg)ocl’,')+zlih% T%aly) — Tgaz;')_{_%h% T(3a2y) (10)
TGO L IRTED = T 415 T4 (11)

Between neighboring cells (forp =1,2,..., M—1)
[T§5 _ldeH) T +ld(]ﬂ+ 1)2 T(lﬁ'y)](p+ Lar) — T@EM +%d(2") T3 +%d(2”)2 T (12)
2 p 2 5
We note that the continuity of temperature between neighboring cells in the x, and x;-
directions is automatically satisfied by the chosen temperature field representation which

reflects the periodic character of the composite in these directions.

Boundary conditions.

Top(p=1)

T = Tr, 2" = —3d{" (13)
Bottom (p = M)

T = Ty, 12 = Jdy a4

where 71 and Ty are the applied temperatures at the top and bottom surface of the
composite plate.

The governing equations at the interior and boundary cells form a system of 40M
linear algebraic equations in the unknown coefficients 7?17 (i=0,...,4; o, 8,y = 1,2;
p =1,..., M). Their solution determines the temperature distribution within the FG com-
posite subjected to the boundary conditions given in eqns (13) and (14). The final form of
this system of equations is symbolically represented below

KT =t (15)

where the structural thermal conductivity matrix k contains information on the geometry
and thermal conductivities of the individual subcells (afy) in the M cells spanning the
thickness of the FG plate, the thermal coefficient vector T = (T{!'V, ... TZ*?), where
TS = (T,, T\, Ty, Ty, T,)?”, contains the unknown coefficients that describe the thermal
field in each subcell, and the thermal force vectort = (T, 0, . .., 0, Tg) contains information
on the thermal boundary conditions.
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2.3. Mechanical analysis: problem formulation

Given the temperature distribution generated by the applied surface temperatures T
and Ty obtained in the preceding section, we now proceed to determine the resulting
displacement and stress ficlds. This is carried out for uniform normal (i.e. no shearing)
mechanical loading applied to the surfaces of the composite.

2.3.1. Equations of equilibrium. The stress field in the subcell («fy) of the pth cell
generated by the given temperature field must satisfy the equilibrium equations

0,08 40,0987 + 6,08 =0, j=1,2,3 (16)

where the operator ¢; has been defined previously. The components of the stress tensor,
assuming that the material occupying the subcell («fy) of the pth cell is orthotropic, are
related to the strain components through the familiar generalized Hooke’s law

DY) (0fy) i Hafiy) ) iafy
(i,(-;‘ﬁ ) — Cif/?f (82?;//) Agk([a/ )—Fff"”T afBy) (17)

where c{i//” are the clements of the stiffness tensor, /" are the inelastic strain components,
and the elements I"*” of the so-called thermal tensor are the products of the stiffness tensor
and the thermal expansion coefficients. In this paper, we consider elastic orthotropic
materials or inelastic isotropic materials. Hence, eqn (17) reduces to

By By T(afy)
al{;th) (x[ )g]((olt[i _ 2ﬂ(a/iv)5 1(2fy) _ j(u/ 7} (1 8)

where p g, 1s the elastic shear modulus of the material filling the given subcell (afy), and
the term og(“’””, henceforth referred to as thermal stress, stands for the thermal contribution
L2 T@  The components of the strain tensor in the individual subcells are, in turn,
obtained from the strain—displacement relations

e = O + o), ij=1,2,3. (19)
Given the relation between the stresses and displacement gradients obtained from eqns (18)
and (19), a displacement field is sought that satisfies the three equilibrium equations together

with the continuity and boundary conditions that follow.

2.3.2. Traction continuity conditions. The continuity of tractions at the interfaces sepa-
rating adjacent subcells within the repeating unit cell (p, ¢, r) is fulfilled by requiring that

1By |20 2y P
a\¥ l,(m av = ot IV,—g’z):,d(zm/,z (20a)

aly) | P47 a2y) 1 Poiir)
ST, = o (20b)

(1) | P41 ﬁv) (p-q.1)
a3i |i(¥n:,1_,2 = |,(<>),,, P (20c)

In addition to the above continuity conditions within the pth cell, the traction continuity
at the interfaces between neighboring cells must be ensured. These conditions are fulfilled
by requiring that

(1) P+ 1.4.0) . 2{)(P’1~") p
ay |, o gttty = T r ’d?):d({)/z (21a)
(al)(PlH—lr) (2)(11(1’)
N = a8 (21b)
1y @ar+1) (p-q.1)
ot )I ey =0 2le)

P =n2°
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2.2.3. Displacement continuity conditions. At the interfaces of the subcells within the
repeating unit cell (p, ¢, r) the displacements u = (u,, u,, ¥;) must be continuous

(1) |-G — 2B a0 ,
u |"ﬂ{j\)ld(l/’)/r2 =1u I_Tillh: ‘I(ll’) 2 (22d)
{x1y) (2.q.r) (329} (py.r) (22b)
u ‘(—‘;”:h,/z =u |f‘,~”; hyi2
pU P4 a2y ()
u |.fg'7:.vl,/2 =u l\‘EZ’: <12 (220)

while the continuity of displacements between neighboring cells is ensured by requiring that

) (p+1.q.r) (20 (pq.r) .
u f ‘\—,mi g T u ! |\—,w3):‘/4m ~ (23‘1)
1 i < 1 2
(219 P+ 1) 2y
w0 (23b)
Ly Par+ ) pa) )
u ]\"“):7/‘/2 =u 'x—‘«f’:/ﬂ/z' (23¢)
A 2

2.3.4. Boundary conditions. The final set of conditions that the solution for the dis-
placement field must satisfy are the boundary conditions at the top and bottom surfaces.
The normal stress in the cell p = 1 at the top surface must equal the applied normal stress

/)
AP = [l T = iy 4

with f(¢) describing the temporal variation of this loading, whereas in the cell p = M at the
bottom surface the condition that the surface x, = H is rigidly clamped (say) is imposed

14(12/1;‘)|(,114(,.:v) — 0’ _‘?(]2) — %(1”3‘“’. (25)
For other types of boundary conditions, eqns (24)—(25) should be modified accordingly. It
should be noted that in the majority of composite applications of technological interest,
S() in eqn (24) will likely be zero since, in general, thin laminated composites are designed
to support loads in the lamination plane rather than in the out-of-plane direction. However,
modeling of processing of functionally graded composites will typically involve application
of transverse loads which, together with the applied thermal loads during fabrication
cooldown, will induce residual stresses. The proposed theory is sufficiently general to model
such combined thermo-mechanical loading histories. In this paper, however, we neglect
residual stresses induced during fabrication. This issue will be considered elsewhere.

2.4. Mechanical analysis : solution

Due to symmetry considerations, the displacement field in the subcell («fy) of the
pthcell is approximated by a second-order expansion in the local coordinates £, £, and
£ as follows:

u(]a/‘“/) = W(lﬁtff}‘)_*_xlﬁ)d)(li/f?)+%(3A—,<lm)2 _%d;mi)U(lilf:') +%(3.\—7(:/f)2 —ihf,)V(,x/;:') +%(3~\—,g7')2 _%[:) VV(]«/f‘:-)
u(zalfn — X.(zmxz B
M(;ﬁ:f) — X.(};‘)l/l(_za/f:ul (26)
where w{#”_ which are the displacements at the center of the subcell, and
U el e pef 389 and " must be determined from conditions similar to

those employed in the thermal problem. In this case, there are 56 M unknown quantities.
The determination of these quantities parallels that of the thermal problem. Here, the heat

SAS 32-12-D
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conduction equation is replaced by the three equilibrium equations, and the continuity of
tractions and displacements at the various interfaces replaces the continuity of heat fluxes
and temperature. Finally, the boundary conditions involve the appropriate mechanical
quantities.

An explicit derivation of the system of linear algebraic equations for the unknown
microvariables appearing in the displacement field expansion has been provided by Aboudi
et al. (1993) when the individual phases are linearly elastic. In this case, the unknown
microvariables depend explicitly on the internal temperature field, internal distribution and
geometry of the individual constituents and their properties. The chosen representation of
the displacement field immediately results in a unique form of the stress field generated
from the assumed displacements using strain—displacement and constitutive relations. In
the inelastic problem however, the displacement field microvariables depend implicitly on the
inelastic strain distributions, giving rise to a higher-order stress field than the strain field
generated from the assumed displacement field representation. In other words, the distribution
of the local stresses within each subcell will be much more complicated than the linear
strain field arising from the assumed displacement field. Herein, we represent this higher-
order stress field in the presence of inelastic effects using a higher-order Legendre polynomial
expansion in the local coordinates. In view of this, the strain field generated from the
assumed displacement field, together with the resulting mechanical and thermal stress fields,
are expressed in terms of Legendre polynomials as follows

o

Z Y N AR2D(A+2m)(1+2n) €51, PP P PLE)  (27)
=10 n

=0

HM@

O’f_-f‘/f 7

M'a‘

Y 3 A 2DU=2m (20 el PO PGP (28)

0 m=0

;" = Z Z Z V (L4200 +2m) (14 2m) 100, PSP, P(LE) - (29)

I=0 m=0 n=0

where the non-dimensionalized variables {s, defined in the interval —1 < {; < 1, are ex-
pressed in terms of the local subcell coordinates as follows: {{* = £(?/(d?/2),({ = =P/
(hy/2), and {9 = ¥ /(1,/2).

For the given displacement field representation, eqn (26), the upper limits on the
summations in eqn (27) become 1, while for the given temperature distribution, eqn (3),
the upper limits on the summations in eqn (29) become 2. The coefficients
e, T o, THHM in the above expansions are determined as follows.

The strain coefficients e{77),, are explicitly determined in terms of the displacement
field microvariables of eqn (26) using orthogonal properties of Legendre polynomials. For
example

e’ 1(0 0,0) = Qb(aﬁ/] (30)

The complete set of non-zero strain coefficients e,j‘(’,",,,”) is given in the Appendix.

The stress coefficients {7, are expressed in terms of the strain coefficients, the
thermal stress coefficients and the unknown inelastic strain distributions by first substituting
the Legendre polynomial representations for e, ¢™*#” and ¢”*#” into the constitutive eqns

(18), and then utilizing the orthogonality of Legendre polynomials

(fiy) (af7) 9] T(apy (afiy)
7'-17( Wm n = C; /kﬂ/ e/(\o;llwm ny _’Cuélfnn) Rl(/x(])ﬁl ny- (31)

The thermal stress coefficients t/7%/), can be similarly expressed in terms of the tem-

perature field microvariables 77" of eqn (3). For example
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Tifihe) = DO TE. (32)
The complete set of non-zero thermal stress coefficients t/4), is given in the Appendix.

The R, terms represent inelastic strain distributions calculated in the following
manner

i VA +2D(1+2m)(1+2n)
iltmny = Heapy 4

XJI f f e PP, (PP, I AP ALY (33)

-1 J-1J=

It should be noted that the choice of the Legendre polynomials in the above expansions
is motivated by the simplicity of their orthogonal properties (i.e. the weight function is
equal to one). It is possible, of course, to use any other orthogonal set of polynomials.

2.4.1. Equations of equilibrium. In the course of satisfying the equilibrium equations in
a volumetric sense, it is convenient to define the following stress quantities

S (@fiy) 1

ij(lmny =

P2 rRg2 (L2
> J f j E) (=) (x9) e dx dxf dx§’ (34)
Ulopy) o —dP12 J—hy2 J—1,52

where i,j = 1,2,3, and v}, = d?hyl, (see Fig. 1). For / = m = n =0, eqn (34) provides
average stresses in the subcell, whereas for other values of (I, m, n) higher-order stresses are
obtained which are needed to describe the governing field equations of the higher-order
continuum. These stress quantities can be evaluated explicitly in terms of the unknown
coefficients U, ... ¢, ... . W§? by performing the required volume integration using
eqns (18), (19) and (26) in eqn (34). This yields the following non-vanishing zeroth-order
and first-order stress components in terms of the unknown coefficients in the displacement
field expansion :

S¥T%.0.0) = TP GE 4+ Ay SN 4 ST — T TED — RER 0.0, (35)
/ i B i Z 7
S 0.0) = T PEI + SEIY SN 4 I T TP — RER 0.0, (36)
SHB.0.0) = ST G 4 SIYEPD 4 YT — T TE — RELR 0.0, (37)
)
S(xﬂy) ! (%ﬁv)d(pﬂ U b ld(p)Z [tepn) b d“ RGN 38
11(1,0,0) = €11 Ay 1 4 i 1= 11(1.0,0) (38)
2./3
h
y ! (py 7 B y
S%i.1.0) = 5 RGV P — —— RV 1 0) (39)
2./3
[
1 Y) 12 y ¥
Sty = KR — = Rl (40)

Satisfaction of the equilibrium equations results in the following eight relations among
the volume-averaged first-order stresses 347, in the different subcells (¢f8y) of the pth cell,
after lengthy algebraic manipulations (see section 3 of Appendix B in Aboudi et al., 1994b)

(ST 0.00/dE? + S0 oy /hf + S$ER.0.0/ 219 =0 41)

where the triplet (¢fy) assumes all permutations of the integers 1 and 2.
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2.4.2. Traction continuity equations. The continuity of tractions at the subcell interfaces,
as well as between individual cells, associated with the x, (FG) direction, eqns (20a) and
(21a) imposed in an average sense, is ensured by the following relations

@»)

¥
2

dp

{128ﬁ12€76).1.o>/'/7:23 + 125(113’:73.0.1)/1;%](1)) +6 [S(lzzliy()).x.o)/’fllfzf + S(IZBQQ‘()‘I)/(‘ls]m) +

as-". 1
< 2 i12 28y 1270 — 287 287 - 1V —

d(P) [S(l 2’1(1(’)),].0)//h[f + S(lﬁf)),o,l]/ ly ](p v + [S(l lﬁ;()).0.0J |U’) - S(l lﬁ(l)).U.O) W )] =0 (42)
i

6
4y

14 _ lop ) 4 lo2py —1) 2p7) 2 (287 27(0)
S(1 1’(%’,0,0)|w> = ES(I 1/(0),0.0)|(p +§S(1 1’(())Aoﬂ()>|(p + 3d(2m[5(12[()0.1 .,0)//}1;; + Stl {(O.OAI)//I)'](I -
(p—1 28y 2 28 21 1)
3dy= VIS z/j(o),l o/l +SS 3’(‘0,0.1)/17](’) (43)

while the equations that ensure traction continuity between individual subcells associated
with the x, and x; directions, eqns (20b) and (20c¢), are given by

[S(lazl("g,l‘())/hl "‘S(lazz("i)),].())/hz](ﬂ) =0 (44)
[P0/l + S50 /R17 =0 (45)
5(2121(70).0,0)“')) = S(zzzz("i)).o.mw) (46)
ngzﬂ(lo)‘omw) = S(;zﬂ(zo).o,f))iw- (47)

We note that eqns (21b) and (21¢) are identically satisfied by the chosen displacement field
representation due to the periodic character of the composite material in the x,—x; plane.
For a detailed derivation of eqns (42)—(47), see section 3 of Appendix B in Aboudi ef al.
(1994b).

Equations (42)—(47) provide us with twenty-four additional relations among the zer-
oth-order and first-order stresses. These relations, together with eqn (41), can be expressed
in terms of the unknown coefficients U, .. ¢%,.. ¢, and the appropriate
R coefficients, by making use of eqns (35)—(40), providing a total of 32 of the required
56 equations necessary for the determination of these coefficients in the pth cell.

2.4.3. Displacement continuity equations. The additional 24 relations necessary to deter-
mine the unknown coefficients in the displacement field expansion are subsequently obtained
by imposing displacement continuity conditions on an average basis at each subcell and
cell interface. The continuity of displacements at each subcell interface of the pth cell, eqns
(22a) through (22¢), is satisfied by the following conditions

(w4 % dP Piien +‘1‘ dP U = [ _% dy i 4 JI dP2U W (48)
W) 4L RV E0 = [ 4L pd )@ (49)

M| = — ] (50)

WD+ BN = [ + LB W (s1)

lll//(;/fl)l(m = _lzw(sa/ﬂw(p) (52)

while the continuity of displacements between neighboring cells in the FG direction, eqn
(23a), requires that
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s 1 N 1 1) n 2 By 1 2 B 1
[‘1’(1]f‘>—§d(1’1+ l)¢(]l/f,l+;dtlp 1)'U(]1/f,)](p+l) — [}t’(]”ﬁ’)—l—id(zp)(l)(. ﬁ"—i—;d(z”)zU(]zM](p). (53)

The displacement continuity between neighboring cells in the x, and x;-directions,
eqns (23b) and (23c¢), is automatically satisfied by the chosen displacement field rep-
resentation which reflects the periodic character of the composite in these directions. For a
detailed derivation of eqns (48)—(53), see section 4 of Appendix B in Aboudi ef al. (1994b).

2.4.4. Governing equations for the unknown coefficients in the displacement expansion.
The equilibrium equations, eqn (41), together with the traction and displacement continuity
equations, eqns (42)—(47) and eqns (48)-(53), respectively, form altogether 56 equations in
the 56 unknowns wi#? @0 e e s e e which govern the equilibrium
of a subcell (afiy) within the pth cell in the interior at the current load increment. As
previously discussed in Aboudi et al. (1994b), a different treatment must be adopted for
the boundary cells p = 1 and p = M. For p = 1, eqns (41), (44)-(47), and the displacement
continuity relations, eqns (48) through (53), are operative, whereas eqns (42) and (43),
which follow from the continuity of tractions between a given cell and the preceding one,
are not applicable. These eight equations must be replaced by the conditions of continuity
of tractions at the interior interfaces of the cell p = 1 and by the applied normal stress at
x; =0, eqn (24). Applying the traction continuity condition at the interface
XV =d{"/2, 5 = —d'V/2 between the subcells (1, ,7) and (2, §,7) within the cell p = 1

in an average sense
1 1 1 1 1 1
180 47 287
ZJ J ai'f” d, ds =4J J ai ¥ dg, dgs
—1 J-1 -1 J-1

produces
[Z \/(] +20) r(]II[Z,]OAO)PI(_*_ 1) = Z AV (1 +ET(|21[::}’,)0‘0)P1(" 1) (54
=0 /=0

for 8,y = 1, 2. The boundary condition o{'f” = f(¢) at {{” = —1 given by eqn (24) is also

applied in an average sense, i.e.

1o 1
! J J o' di, dls = f(1).
1J-1

Expressing the normal traction ¢!} in terms of the Legendre polynomial expansion, and
then performing the indicated integration, yields

[;N'(szl)(v1)’r<1*ﬁ;3(,‘0) =f@) for B=12; y=1,2. (55)

For the cell p = M, the previously derived governing equations are operative except for the
four relations given by eqn (53) which are obviously not applicable. These are replaced by
the condition that the surface x; = H is rigidly clamped (say), eqn (25). Consequently, the
governing equations at both interior and boundary cells form a system of 56/ linear
algebraic equations in the field variables of the cells along 0 < x, < H at the current instant
of loading. The final form of this system of equations is symbolically represented below

KU=f+g (56)

where the structural stiffness matrix K contains information on the geometry and ther-
momechanical properties of the individual subcells (2fy) in the M cells spanning the
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thickness of the FG plate. The displacement coefficient vector U contains the unknown
coefficients that describe the displacement field in each subcell, i.e. U = (U{"'", ..., U%*?)
where UM = (w(, ¢, Uy, Vi, Wi, %2, ¥5)5#”, and the mechanical force vector f contains
information on the mechanical boundary conditions and the thermal loading effects gen-
erated by the applied temperature. In addition, the inelastic force vector g appearing on
the right hand side of eqn (56) contains the inelastic effects given in terms of the integrals
of the inelastic strain distributions that are represented by the coefficients R{# . These
integrals depend implicitly on the elements of the displacement coefficient vector U, requir-
ing an incremental solution of eqn (56) at each point along the loading path.

2.4.5. Solution of the governing equations for the unknown coefficients. The choice of an
appropriate technique for the solution of eqn (56) depends on the inelastic constitutive
model employed to calculate the inelastic strain distributions in each subcell from which
the coefficients R{f7, ,, can be generated. For instance, if the classical incremental plasticity
(Prandtl-Reuss) equations are employed to model the inelastic response of the matrix
phase, then Mendelson’s iterative method of successive elastic solutions is an appropriate
technique for the determination of the plastic strains needed in the solution of eqn (56) at
each increment of the applied load (Mendelson, 1983). This method has recently been
employed by Pindera et al. (1993a,b) in investigating the thermo-plastic response of unidi-
rectional metal matrix composites subjected to axisymmetric loading for those situations
where rate effects can be neglected. An advantage of this solution technique is its efficiency
and relative quick convergence even for relatively large load increments (Williams and
Pindera, 1994). If, on the other hand, a unified viscoplastic constitutive theory is employed
to model the inelastic response of the matrix phase, then either an implicit or an explicit
technique can be employed to integrate the viscoplastic rate equations at each increment of
the applied load. The integration of viscoplastic constitutive equations, however, can require
a substantial computational effort due to the potentially stiff behavior of this class of
equations.

In the present framework, two constitutive theories are employed to describe the
inelastic response of the matrix phase, namely the Bodner-Partom unified viscoplasticity
theory and the classical incremental plasticity theory. The plasticity theory is employed to
efficiently model the inelastic constitutive response of the matrix phase when rate effects
can be neglected, whereas the more computationally intensive Bodner-Partom theory is
employed for those situations where rate-dependent deformation must be taken into
account. It should be noted that the present formulation is sufficiently general to accom-
modate other types of unified viscoplasticity theories.

Bodner—Partom unified viscoplasticity theory. The version of the Bodner—Partom theory
employed in generating the components of the inelastic force vector g in eqn (56) is limited
to viscoplastic materials that exhibit isotropic hardening. While the theory, in general,
models rate-dependent behavior of metals at elevated temperatures, it is particularly suitable
for modeling rate-dependent plastic deformation at different loading rates.

According to the Bodner—Partom theory, the viscoplastic strain rate in the matrix
phase is expressed as (omitting the superscripts («fy) associated with a particular matrix
subcell)

&= As, (57)

where A is the flow rule function of the matrix material and s, are the deviatoric stress
components, that is s; = ¢,;— 0y, 0,/3. The explicit form of the flow rule function is given
by

A = Dyexp {—#[Z GBI}/ T (58)

where 7i = (n+1)/2n, and J, = s-8/2 is the second invariant of the deviatoric stresses. D,
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and » are inelastic parameters, and Z is a state variable whose evolution is given for an
isotropic hardening material by

7= Zﬂo(z1 )W, (59)

where W, is the plastic work rate per unit volume.

In the above equations, the five parameters D,, Z,, Z,, n and m have the following
meaning. Dy is the limiting strain rate in shear for large values of the second stress invariant
J,; Z, is the initial value of the hardening variable Z which is related to the yield stress of
the material in simple tension ; Z, is the saturation value of the hardening variable for large
values of stresses ; m is a parameter that controls the rate of work-hardening of the material ;
and # is a parameter that controls the rate sensitivity of the material. More information
regarding the meaning and physical interpretation of these parameters can be found in
Bodner (1987) and Aboudi (1991).

The solution of eqn (56) is generated at each increment of the applied thermal load as
follows. First, the viscoplastic strain increments that result from an imposed thermal load
increment are determined at a number of points within each subcell using an explicit forward
Euler integration scheme based on the known state of deformation. These increments are
then used to calculate the current inelastic strain distributions in each subcell needed to
determine the coefficients R{#7) ), and thus the elements of the inelastic force vector g. The
knowledge of the current inelastic force vector allows one to determine the current values
of the displacement field vector U by solving eqn (56), and thus the current stress and strain
states. The thermal load is incremented and the entire process repeated.

The magnitude of the applied thermal load increment is governed by the imposed rate
of change of the temperature profile with respect to time and the magnitude of the time
increment used to integrate the viscoplastic constitutive equations. The explicit forward
Euler integration scheme presently employed requires the time increment to be sufficiently
small so as to guarantee convergence of the integration process.

Classical incremental plasticity theory. In the classical incremental plasticity theory,
the plastic strain increment is derived from a von Mises yield condition of the form

F=3s,5,—38(&,7)=0 (60)
where the effective yield stress & is a function of both the effective plastic strain & and
temperature 7. Using the associated flow rule, the plastic strain increment at any point in
the matrix phase is thus

oF
0s;

Yy

def = - —dA =s,dA (61)

where d4 > 0 for plastic loading, and d4 < 0 for neutral loading or unloading. The pro-
portionality constant d/ is obtained from a consistency condition that ensures that the
stress vector remains on the yield surface during plastic loading, and is given in terms of
the elastic stiffness elements, stresses, elastic strains and the strain-hardening characteristics
(Pindera et al., 1993a). This form of the incremental plasticity equations was employed in
previous investigations and found to yield generally good convergence. For materials with
very low rates of strain-hardening however, difficulties can be encountered using this form
of the incremental plasticity equations. To ensure convergence of the iterative scheme for
a wide class of materials in a wide temperature range, so-called plastic strain—total strain
plasticity relations were employed in the present investigation by rewriting eqn (61) in terms
of total strains without recourse to the stresses (Mendelson, 1983 ; Pindera er al., 1993b).
In this formulation of the incremental plasticity equations, the plastic strain increments are
now given in terms of so-called modified total strain deviators e,
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(?” _ )
def, = —de” (62)
Cetr

where ¢, = &, — 173848, — &)l previouss @er = ~/ 2/3€4e,, and  the effective plastic strain
increment d&” is given by

48" = o, - (63)

Herein, the elastoplastic stress—strain response of the matrix is taken to be bilinear, with
the effective stress 5(8”, T) given by

a@®@, )= a,(T)+H,(T& (64)

where & ,(7) is the yield stress in simple tension and H,(7) is the slope of the effective stress—
plastic strain curve.

The implementation of these plastic strain—total strain plasticity relations is carried
out in the same manner as the classical form. That is, the yield condition is first checked at
each point within the elastoplastic material to determine whether the material continues to
load elastically or whether it has yielded. If the material has yielded, then continued loading
is ensured by dg” > 0 and unloading by dg” < 0.

The solution of eqn (56) based on the Prandtl-Reuss plasticity equations is carried
out following Mendelson’s iterative scheme briefly outlined next. For the given thermo-
mechanical load increment, the inelastic strain at any point in each layer is expressed in
terms of the strain from the preceding loading state plus an increment that results from the
imposed load increment

d)/ (X) |currcm = 5{;(X) lprsvmus + dEZ(X) (65)

The plastic strain distribution in each subcell is subsequently determined by calculating
plastic strains at 21 equally spaced locations after updating the plastic strains at these
locations using eqn (65). The current values for the plastic strains at these stations are then
used in determining the integrals R{/7),, given in eqn (33), and thus the elements of the
inelastic force vector g in eqn (56). Updated values of the interfacial displacements are
then obtained from these equations. With a knowledge of the current components of the
displacement coefticient vector U, solutions for the displacement components {1/
and u$™, eqns (26), at any point within each subcell are obtained, from which total strains,
and their corresponding stresses, are calculated. These are then used to obtain new approxi-
mations for the plastic strain increments. The iterative process is terminated when the
differences between two successive sets of plastic strain increments are less than some
prescribed value.

2.4.6. Inplane force and moment resultants. The determination of the stress fields in the
individual subcells obtained from the solution of eqn (56) allows one to generate the inplane
force and moment resultants produced by the stress components in the x,—x, plane (see
Fig. 1). The inplane force and moment resultants are defined as follows

Hi2
N = J o()dz (66)
—H2
H:2
M = [ a(z)zdz. (67)
-H/2

Changing the integration variable from z to {{* we obtain:
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where
p—1
xP =% (dP+dP) fora=1
k=1
or
p—1
Xy = Z dP+dP)+dP  fora =2
k=1
and so

l 2
N=——"—"—— ho L NS 70
U+ i)+ 22, (70)
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3. APPLICATIONS

The approach outlined in the foregoing is employed to investigate the response of
metal matrix composite (MMC) plates subjected to a thermal gradient in the through-the-
thickness direction (i.e. in the FG direction) in the presence of temperature-dependent
inelastic behavior of the constituents. The objective is to quantify the effect of inelasticity
on the response of uniformly and nonuniformly graded composites at the micromechanical
and macromechanical levels. To accomplish this, the results of a purely elastic analysis
presented earlier by Aboudi et af. (1993) will be compared and contrasted with the results
of the inelastic analysis. In addition, application of the theory developed herein to MMC
plates with a thermal barrier coating is also presented. Results for different distributions of
ceramic inclusions in a metallic matrix protected by a ceramic thermal barrier coating (TBC)
are compared with the results generated for configurations laminated with homogeneous
materials in order to demonstrate the influence of graded architectures on the internal
temperature and stress distributions, and the resulting inplane force and moment resultants.

Consequently, two types of configurations are considered herein. In the first case,
unidirectional composite plates consisting of continuous SiC fibers oriented in the x;
direction (see Fig. 1) and embedded in a titanium matrix are analyzed in the presence of
various through-the-thickness thermal gradients. Configurations with three and ten
through-the-thickness continuous fibers, with uniform and nonuniform spacing, are con-
sidered with the emphasis on the comparison of elastic and inelastic analyses. This includes
internal stress fields and the resulting inplane force and moment resultants. The imposed
temperature gradient across the plate’s thickness is 500°C, with the temperature 75 at the
top surface of the composite (x; = 0) higher relative to the temperature Ty at the bottom
surface (x; = H). Two reference Ty temperatures were employed for the configuration with
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Fig. 3. Metal matrix composite plate configurations protected by a ceramic thermal barrier coating
(TBC) : (a) TBC/Ti bi-material plate ; (b) TBC/SiC-Ti composite plate ; (¢) TBC/Ti/SiC tri-material
plate.

three through-the-thickness fibers, namely 21°C and 400°C, while six reference temperatures
were employed for the configuration with ten through-the-thickness fibers, namely 21°C,
100°C, 200°C, 300°C, 350°C and 400°C. The two configurations are constrained from
deforming due to the applied thermal loading by imposing mixed boundary conditions at
the bottom surface that simulate honeycomb-type constraint (i.e. zero displacement over a
portion of the unit cell and zero traction over the remaining part). At the top surface, the
normal traction component is required to vanish (i.e. g,; = 0).

In the second case, the response of a composite plate consisting of a titanium matrix
reinforced by discrete SiC inclusions and protected at the hot surface by a thin ceramic
TBC was analyzed in the presence of a temperature gradient of 879°C. The designation
TBC/Ti-SiC is used to describe this composite plate configuration. Three through-the-
thickness rows of inclusions with uniform and nonuniform spacings were employed in the
analysis for the Ti-SiC region. The applied temperature T; at the top surface of the
composite plate was 900°C while the bottom surface temperature 75 was maintained at
21°C. This configuration was constrained in the same manner as the continuously reinforced
configurations without the thermal barrier coating. In order to assess the potential benefit
derived from embedding particulate inclusions in the titanium layer, two additional con-
figurations constructed with homogeneous plies were investigated. One configuration,
herein called TBC/Ti bi-material plate, consisted of a thin ceramic TBC bonded to a pure
titanium layer. In the other configuration, herein called TBC/Ti/SiC tri-material plate, a
thin SiC layer was bonded to the bottom face of the titanium layer protected by a TBC,
such that the volume ratio of the titanium and SiC plies was the same as that in the SiC
inclusion-reinforced configurations. Figure 3 illustrates the three types of configurations
protected by thermal barriers considered herein.
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Table 1. Material properties of SiC fiber

E (GPa) v 2 (107¢ m/m/°C) K (W/m-"C)

400.0 0.17 3.53 17.6

E and v denote the Young’s modulus and Poisson’s ratio, respectively, « is
the coefficient of thermal expansion, and « is the thermal conductivity.

Table 2. Thermo-elastic material properties of Ti-6Al-4V titanium matrix

Temperature (°C) E (GPa) v o (107° mjm/°C) K (W/m-"C)
21 113.7 0.3 9.44 8.0
149 107.5 0.3 9.62 10.0
315 97.9 0.3 9.78 13.0
482 81.3 0.3 9.83 15.0
649 49.6 0.3 9.72 17.0
900 20.7 0.3 9.81 18.0

Table 3. Inelastic material properties of Ti-6Al-4V titanium matrix

Temperature Dy Z, Z, Y H
(“C) (sec™") (GPa) (GPa) m n (MPa) (GPa)

21 10,000 1.06 1.5 12.70 10.00 900 4.6

149 10,000 0.89 1.5 11.68 8.42 730 4.7

315 10,000 0.80 1.5 19.20 3.60 517 54

482 10,000 1.14 1.5 121.00 1.17 482 4.8

649 10,000 1.16 1.5 85.60 1.04 303 1.7

900 10,000 0.58 1.5 340.00 0.40 35 1.2

Dy, Z,, Z,, m, n are the Bodner-Partom viscoplastic constants, while ¥ and H are the yield stress in simple
tension and the flow modulus, respectively.

Table 4. Thermo-elastic material properties of a porous ceramic thermal barrier coating

Temperature (°C) E(GPa) v a(10~° m/m/”C) k(W/m—°C)
21 41 0.25 10.0 1.5
645 37 0.25 11.0 3.0
982 26 0.25 12.0 3.9

The properties of the SiC fiber/inclusion and matrix phases used in the continuously
reinforced and the TBC-protected configurations are provided in Tables 1 through 3,
while the properties of the ceramic thermal barrier coating are given in Table 4. The SiC
fiber/inclusion phase is elastic with temperature-independent material parameters, while
the titanium matrix properties are given at six different temperatures in the range 21°C to
900°C. The ceramic TBC is elastic with temperature-dependent properties specified at three
different temperatures in the range 21°C to 982°C. The titanium matrix for the continuously
reinforced configurations without the thermal barrier coating is modeled using the Bodner—
Partom unified viscoplasticity theory. Alternatively, the same titanium matrix is modeled
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Fig. 4. Comparison of the titanium stress—strain response predicted by the Bodner—Partom unified
viscoplasticity theory and the classical incremental plasticity theory.
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Fig. 5. Uniform and exponential (6 = 1) fiber distributions along the x, direction in a composite
with ten through-the-thickness fibers.

using the classical incremental plasticity theory for the configurations protected by the
thermal barrier coating. In this case, bilinear stress-strain representation is chosen with a
constant hardening slope. Figure 4 compares the predicted responses of the titanium
matrix obtained from the two inelastic constitutive models. As mentioned previously, the
incremental plasticity model is substantially more efficient in generating a solution to the
outlined problems than the Bodner-Partom viscoplastic model and therefore is more
attractive when rate-dependent effects can be neglected. The use of the two models illustrates
the ease of incorporating different inelastic constitutive theories into the analytical frame-
work outlined herein.

The nonuniform fiber and particulate inclusion distributions in the FG direction
considered in the two types of configurations involve exponential spacings. Fig. 5. The
exponential fiber distributions were generated by adjusting the layer thickness,
L, =d%+dY, according to the formula

L, = A V1B A (72)

where
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H-MB

In the above, p=1,2,...., M, L, = B=h+h, and é = | and/or 2, depending on the
considered configuration, as will be described in the sequel. The total thickness of the
composite is H = 2 (M — 1) x (h, +h,), and the fiber volume fraction is then calculated from
the formula

_ (M =Ddy”
C Hh +h)

(73)

vy

where d{” = h,. The above distributions produce fiber concentration gradients that decrease
(i.e. fiber spacing increases) with increasing x, coordinate. For an increasing fiber con-
centration gradient employed in the present analysis (i.e. decreasing fiber spacing), the
mirror image of the above pattern is taken.

3.1. Response of unidirectional composites with continuous fibers

The inelastic response of unidirectional SiC/Ti composites reinforced with uniformly
and exponentially spaced continuous fibers is compared with results from a purely elastic
analysis. Comparisons of both the normal stress distributions and the inplane force and
moment resultants are presented. Only the o,, distributions will be presented, however, as
the o, distributions exhibited similar trends, leading to the same conclusions. The o,
distributions are given for the representative cross-section (RCS) containing both phases
(see Fig. 1). Since in the present formulation the thermal and mechanical field quantities
are uncoupled, the temperature profiles generated using clastic and inelastic analyses are
identical, and thus will not be presented. Results showing the influence of internal archi-
tecture on the thermal fields have been presented elsewhere (Aboudi ef al., 1993 ; 1994a,b).

The fiber dimension d{” for all configurations was 125.85 um, and was obtained by
ensuring that the cross-sectional area of the circular SiC fiber was equal to the cross-sectional
area of the square idealization employed in the model. The horizontal cell dimension £, + #,,
which also defines the parameter B in eqn (72) for the exponentially spaced configurations,
was 140.71 um. Thus the total thickness H of the configurations with three and ten through-
the-thickness fibers was 844.28 and 2,814 um, respectively. These dimensions ensured that
the fiber volume fraction was always maintained at 0.40, or 40%. For the uniformly spaced
configurations, the fiber centers coincided with planes that divided the SiC/Ti composite
plates into four or eleven equal plies. For the exponentially spaced configurations, the
location of the fiber adjacent to the colder surface coincided with the horizontal cell
dimension B = &, + h.. whereas the remaining distances between fiber centers were obtained
from eqn (72). The exponential fiber distributions were generated using & = 1 in eqn (72).

3.1.1. Unidirectional composites with threc through-the-thickness fibers. The normal
stress distributions g,, obtained with the elastic and viscoplastic analysis are presented in
Fig. 6 for the configuration with three through-the-thickness fibers subjected to the 500°C
temperature gradient, with the reference temperature Ty at the bottom surface held at 21°C.
For both the uniformly and exponentially spaced fiber distributions, Figs 6(a) and 6(b)
respectively, no difference between the elastic and viscoplastic analysis is observed in the
fiber and matrix phases below the first matrix-rich layer adjacent to the top surface. In
these regions. the temperature relative to the reference temperature is not sufficiently large
to initiate inelastic flow in the matrix phase. In the matrix layer directly adjacent to the top
surface, however, the thermally-induced residual stresses are sufficiently large and the
temperature-dependent matrix properties sufficiently low to induce plasticity in the matrix
phase. This results in lower magnitudes of the normal stress o,, predicted by the viscoplastic
analysis relative to the elastic predictions.
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Fig. 6. Through-the-thickness normal stress ¢, in a unidirectional composite with three uniformly
spaced (a) and exponentially spaced (6 = 1) (b) fibers, in the cross-section containing both phases
for T, = 21°C. Comparison between elastic and inelastic analysis.

Figure 7 illustrates the corresponding normal stress distributions when the reference
temperature at the bottom surface is held at 400°C. In this case, the differences between
elastic and inelastic analyses are substantially more pronounced, and propagate deeper
into the plate. For the uniformly spaced configuration, the elastic analysis substantially
overpredicts the normal stress in the matrix layer adjacent to the top surface, while in the
first fiber and the adjacent matrix-rich region the differences are progressively smaller
and eventually disappear at the depth of the second fiber. For the exponentially spaced
configuration, similar differences in the predictions of the elastic and inelastic analyses are
observed. Comparison of the stress profiles presented in Figs 6 and 7 clearly illustrate the
importance of taking into account temperature-dependent properties of the constituent
phases in the analysis, in addition to the inelastic effects.

Figure 8 summarizes the results for the inplane force and moment resultants generated
with the elastic and inelastic analyses at the two reference temperatures for the uniformly
and exponentially spaced configurations. The results are normalized by the predictions of
the elastic analysis. As expected from the examination of the stress profiles, the elastic
analysis overpredicts both sets of resultants, the extent of which depends on the reference
temperature, the resultant quantity, and the fiber distribution. At the lower reference
temperature, small differences between elastic and inelastic results for the inplane force
resultants are observed in the case of both uniformly and exponentially spaced configur-
ations. The differences in the inplane moment resultants, however, are more significant. At
the higher reference temperature, the differences in the inplane force resultants increase
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Fig. 7. Through-the-thickness normal stress o, in a unidirectional composite with three uniformly
spaced (a) and exponentially spaced (& = 1) (b) fibers, in the cross-section containing both phases
for T,; = 400°C. Comparison between elastic and inelastic analysis.

somewhat, and tend to be higher for the N, than the N; resultant in both the uniformly and
exponentially spaced configurations. The differences in the moment resultants, on the other
hand, are very dramatic. The greatest differences occur for the M, moment resultant, with
the exponentially spaced configuration exhibiting a greater difference than the uniformly
spaced configuration. The predictions observed for the M; moment resultant follow similar
trends.

3.1.2. Unidirectional composites with ten through-the-thickness fibers. The normal stress
distributions g, obtained with the elastic and viscoplastic analysis are presented in Fig. 9 for
the configuration with ten through-the-thickness fibers subjected to the 500°C temperature
gradient, with the reference temperature 7 at the bottom surface held at 21°C. For both
the uniformly and exponentially spaced fiber distributions generated with é = 1, Figs 9(a)
and 9(b), respectively, no difference between the elastic and viscoplastic analysis is observed
in the fiber and matrix phases at a depth greater than approximately 700 um below the top
surface of the plate. This distance corresponds to the third and first fiber from the top
surface for the uniformly and exponentially spaced configurations, respectively. In the
matrix regions closer to the top surface, lower magnitudes of the normal stress o5, are
predicted by the inelastic analysis relative to the elastic predictions. These differences are
not insignificant in the matrix layer directly adjacent to the top surface and decrease with
increasing distance from the top surface. Virtually no difference is observed in the normal
stress g, predicted by the elastic and inelastic analyses in the fiber phase in the immediate



1698 J. Aboudi et al
SiC/Ti-Al composite with 3 through-the-thickness fibers

N, /N, N,/Ng
1.0 1.0
zZ
05 0.5 g
T 7.
21°C 21°C 400°C
M, /M, M, /M,
1.0 1.0
05 05
21°C 400°C T 21°C 400°C =T

- uniform exponential

Fig. 8. Comparison of the inplane force and moment resultants obtained with elastic and inelastic
analyses for a SiC/Ti composite with three through-the-thickness fibers.

vicinity of the top surface and elsewhere for both the uniformly and exponentially spaced
configurations.

Figure 10 illustrates the corresponding normal stress distributions when the reference
temperature at the bottom surface is held at 400°C. In this case, the differences between
elastic and inelastic analyses are substantially more pronounced, and propagate deeper into
the plate to approximately the same relative distance that was observed in the configurations
with three through-the-thickness fibers. For both the uniformly and exponentially spaced
configuration, no difference between the elastic and inelastic analyses is observed in the
matrix and fiber phases at a depth approximately greater than 1200 ym below the top
surface of the plate. Closer to the top surface, the elastic analysis substantially overpredicts
the normal stress oo, in both the matrix and fiber phases, with the differences between the
elastic and inelastic analyses decreasing with increasing distance from the top surface as
observed previously. Comparison of the stress profiles presented in Figures 9 and 10 again
points to the importance of temperature-dependent properties of the constituent phases.

Figure 11 summarizes the results for the inplane force and moment resultants generated
with the elastic and inelastic analyses at the two reference temperatures for the uniformly
and exponentially spaced configurations. As in the previous case with three through-the-
thickness fibers (see Fig. 8), the inplane force and moment resultants are normalized by the
elastic results. The differences between the elastic and inelastic predictions follow the trends
discussed for the configuration with three through-the-thickness fibers, with two important
distinctions. At the lower reference temperature, differences in the inplane force and moment
resultants are of the same order of magnitude (approximately 10%) for the uniformly
spaced configuration. For the exponentially spaced configuration, on the other hand, the
differences in the inplane force resultants decrease substantially while the differences in the
moment resultants remain the same. More importantly, at the higher reference temperature
the inplane moment resultants M, and M, predicted by the inelastic analysis for the
exponentially spaced configuration change sign relative to the elastic predictions. In order
to investigate this phenomenon further, additional results were generated at several inter-
mediate reference temperatures. The inelastic results for the moment resultant M, as a
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Fig. 9. Through-the-thickness normal stress o,, in a unidirectional composite with ten uniformly
spaced (a) and exponentially spaced (J = 1) (b) fibers, in the cross-section containing both phases
for T,s = 21°C. Comparison between elastic and inelastic analysis.

function of the reference temperature for the exponentially spaced configuration normalized
by the results for the uniformly spaced configuration are presented in Fig. 12. The results
indicate that the change in the sign of the moment resultant M, for the exponentially spaced
configuration occurs above the reference (cold side) temperature of 350°C. No sign reversal
is observed, however, when the inelastic effects are neglected.

3.2. Response of thermally-protected composites with discrete inclusions

In this section, we consider the response of a three-phase composite plate to a through-
the-thickness temperature gradient. The plate consists of a ceramic TBC bonded to a
titanium matrix reinforced with cubical SiC inclusions. The designation TBC/Ti-SiC is
used to describe this composite plate configuration. The inclusions are distributed either
uniformly or exponentially, with the exponential distributions generated using é = 1 and 2
in eqn (72). The properties of the titanium matrix and SiC inclusions are the same as the
properties employed in the preceding section. The titanium matrix is modeled using the
classical incremental plasticity theory. We note that the coating material is elastic with a
low Young’s modulus and thermal conductivity relative to those of the other constituents,
and a thermal expansion coefficient comparable to that of the matrix (see Table 4). Its
purpose, therefore, is to protect the portion of the Ti-SiC region subjected to an elevated
temperature from excessively high temperatures.

The thickness dimension of the Ti-SiC portion of the plate is the same as in the
preceding section (i.e. 844.28 um), as is the cross-sectional area of the cubical inclusions

SAS 32-12-E
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Fig. 10. Through-the-thickness normal stress a,, in a unidirectional composite with ten uniformty
spaced (a) and exponentially spaced (6 = 1) (b) fibers, in the cross-section containing both phases
for T = 400°C. Comparison between elastic and inelastic analysis.

defined by d¥’ = 125.85 ym. Thus the inclusion volume content is now different than that
of the unidirectionally reinforced SiC/Ti composite considered previously (i.e. 0.358 vs
0.400). The thickness of the thermal barrier coating is one eighth that of the thickness of
the Ti-SiC region, or 105.53 um (see Fig. 3). The top surface is subjected to the temperature
Tr of 900°C while the bottom surface is maintained at the temperature 7 of 21°C. Thus
the total temperature gradient is now almost twice as high as in the previously considered
continuously reinforced SiC/Ti composite plates without the thermal barrier coating. The
presence of the low conductivity thermal barrier, however, will substantially reduce the
actual thermal gradient in the Ti-SiC region of the three-phase composite plate, making it
possible to draw some correlation between the two sets of results.

The response of the thermally-protected TBC/Ti-SiC configurations reinforced with
uniformly and exponentially spaced inclusions predicted by the inelastic analysis is com-
pared with a purely elastic response. Comparison for both the normal stress distributions
and the inplane force and moment resultants is presented. Only the o, distributions will be
presented given the same microstructure of the composite plate when viewed from the x,
and x; directions. These stress distributions are given in the RCS containing both phases
as well as in the RCS containing matrix only (see Fig. 1). The results are also compared
with the response of a thermally-protected pure titanium matrix without the inclusion
phase (TBC/Ti bi-material plate), and a thermally-protected sandwich plate consisting of
homogeneous titanium and SiC plies (TBC/Ti/SiC tri-material plate). This comparison is
carried out in order to illustrate the advantages of employing uniformly and nonuniformly
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Fig. 11. Comparison of the inplane force and moment resultants obtained with elastic and inelastic
analyses for a SiC/Ti composite with ten through-the-thickness fibers.
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in a unidirectional composite with ten through-the-thickness fibers predicted by the inelastic analysis.

spaced two-phase microstructures to control the internal stress and plastic strain dis-
tributions with the objective of reducing the bending moment resultants.

As the first step, in Fig. 13 we present the temperature distributions in three of the five
configurations protected by the same thermal barrier coating in the RCS that includes both
phases. The three configurations include the TBC/Ti bi-material plate, the TBC/Ti/SiC tri-
material plate, and the TBC/Ti-SiC composite plate with exponentially spaced SiC
inclusions generated with & = 2. The temperature distributions for the TBC/Ti-SiC con-
figuration with uniformly and exponentially spaced inclusions with é =1 are not sub-
stantially different from that of the § = 2 configuration and thus are not included in the
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Fig. 13. Through-the-thickness temperature distributions in a TBC/Ti bi-material plate, TBC/Ti-
SiC composite plate with three exponentially spaced inclusions, and TBC/Ti/SiC tri-material plate
(see Fig. 3) for T\, = 21°C.

figure. As is observed, the temperature distributions in the configurations laminated with
homogeneous plies have a bi-linear or a tri-linear appearance, whereas the temperature
distribution in the SiC inclusion-reinforced plate exhibits a quasi tri-linear appearance with
slight changes in slope in the Ti-SiC region due to the different thermal conductivity between
the titanium matrix and the SiC inclusions. The temperature profile of the TBC/Ti bi-
material configuration is bounded by the temperature profiles of the TBC/Ti/SiC tri-
material and the TBC/Ti-SiC composite configurations. When the SiC phase is in the form
of a homogeneous plate bonded to the bottom surface of the titanium layer, the temperature
distribution in such configurations is lower relative to the configuration consisting of the
thermal coating bonded to the homogeneous titanium matrix. This is due to the higher
thermal conductivity of the SiC layer relative to the titanium matrix in the low temperature
range (see Tables 1 and 2) at the cold surface of the plate. Alternatively, when the SiC
phase is embedded directly in the titanium matrix in the form of inclusions, the temperature
profile is now higher relative to the TBC/Ti bi-material plate due to the higher effective
thermal conductivity of the Ti-SiC composite region exposed to the elevated temperature.
As will be seen, this is an important result that will have a direct bearing on the favorable
redistribution of the internal stresses in the Ti-SiC region of the TBC/Ti-SiC composite
plate when compared to the stress distribution in the Ti region of either the TBC/Ti bi-
material or TBC/Ti/SiC tri-material plate.

The normal stress o,, distributions produced by the temperature profiles presented in
Fig. 13 based on the inelastic analysis are compared with the corresponding elastic results
for four of the five configurations in Fig. 14. In the TBC/Ti bi-material plate, Fig. 14(a),
one observes dramatic differences between the elastic and inelastic results in the titanium
matrix directly adjacent to the thermal barrier coating, suggesting significant plastic flow
that leads to significant reduction in the normal stress when plasticity is taken into account.
These differences slowly decrease with increasing distance from the thermal barrier coating,
but never fully vanish. Similar trends are observed for the TBC/Ti/SiC tri-material plate in
Fig. 14(b). For the uniformly spaced TBC/Ti-SiC composite plate configuration, Fig. 14(c),
substantial differences also are observed between the inelastic and elastic analyses in the
matrix region next to the thermal barrier coating. However, no differences are observed in
the fiber phases. Both elastic and inelastic analyses predict identical stress distributions
starting from the second SiC inclusion from the thermal barrier. This is similar to the normal
stress distributions observed in the continously-reinforced SiC/Ti composites discussed
previously. The normal stress profiles for the exponentially spaced TBC/Ti-SiC composite
plate configuration with § = 2, Fig. 14(d), follow those of the uniformly spaced configur-
ation. The stress profiles of the exponentially spaced configuration with é = | are shifted
relative to the profiles in Fig. 14(d), but otherwise exhibit the same pattern.
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Fig. 14. Through-the-thickness normal stress g, in thermally-protected composite plate con-

figurations with different substrate microstructures in the cross-section containing both phases for

T.s = 21°C. Comparison between elastic and inelastic analysis for: (a) TBC/Ti bi-material plate;

(b) TBC/Ti/SiC tri-material plate; (¢) TBC/SiC-Ti composite plate reinforced by three uniformly

spaced SiC inclusions; (d) TBC/SiC-Ti composite plate reinforced by three exponentially spaced
SiC inclusions (6 = 2).

Figure 15 presents a comparison between the inplane force and moment resultants N,
and M, obtained with the inelastic and elastic analysis for the five configurations in terms
of the previously employed ratios (see Fig. 11). The greatest differences between elastic and
inelastic results occur for the TBC/Ti bi-material plate, and are approximately the same for
the inplane force and moment resultants (i.e. around 27%). For the SiC inclusion-reinforced
configurations, differences on the order of 5% between inelastic and elastic analyses are
observed for the inplane force resultants. For the moment resultants, on the other hand,
these differences are substantially greater, and range from 16% to 20%. Exponentially
spaced configurations produce greater differences than the uniformly spaced configuration.
It is interesting to point out that in the case of the TBC/Ti/SiC tri-material plate, the
differences in the elastic and inelastic predictions do not follow the trends observed in
the uniformly and exponentially spaced configurations with increasing concentration of
inclusions towards the colder surface. In particular, while the bending moment ratio for
the SiC inclusion-reinforced configuration decreases with increasing inclusion concentration
closer to the colder surface, implying an increasingly greater role of matrix plasticity in the
matrix region adjacent to the ceramic TBC, the bending moment ratio for the tri-material
configuration is actually higher relative to the exponentially reinforced configuration with
0 = 2. This can be explained by observing that the homogeneous SiC ply actually lowers
the temperature distribution in the titanium matrix, Fig. 13, thus increasing the normal
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stress in the titanium matrix close to the hot surface while suppressing the plastic flow due
to the stiffer response of titanium at lower temperatures (see Fig. 4), as will be subsequently
discussed.

Next, comparison between the inelastic stress distributions for the different con-
figurations is presented in order to study the effect of the internal architectures on the stress
and plastic strain fields, and the resulting inplane force and moment resultants. Figure 16
presents a comparison between the normal stress distributions in the bi-material and tri-
material plates, and the uniformly and exponentially spaced (6 = 1 and 2) configurations
for the RCS containing both phases, Fig 16(a), as well as the RCS containing only the
matrix phase, Fig. 16(b). The results indicate that the presence of the SiC inclusions
decreases the magnitude of the normal stress in the matrix phase directly adjacent to the
ceramic TBC relative to the normal stress in the bi-material and tri-material plate. In
regions further away from the thermal barrier, however, the magnitude of the normal stress
is now greater in the SiC particle-reinforced plate. The presence of the SiC particles,
therefore, results in re-distribution of the normal stress o,,, suggesting that embedding the
SiC particles in the titanium matrix in the manner indicated will increase the inplane force
resultants, while decreasing the moment resultants, as subsequently demonstrated.

In order to assess the role of plasticity in the redistribution of the normal stress
observed in Fig. 16, effective plastic strain distributions were calculated in the bi-material
and tri-material as well as the uniformly and exponentially spaced configurations. These
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distributions are illustrated in Fig. 17 for both representative cross-sections. The results
clearly indicate that the increase in the normal stress distribution in the TBC/Ti/SiC tri-
material plate relative to the TBC/Ti bi-material plate seen in Fig. 16 is accompanied by a
reduction in the plastic strain distribution. Since Fig. 13 indicates that the temperature
profile in the TBC/Ti/SiC tri-material plate is lower relative to the TBC/Ti plate, the
temperature-dependent properties of the titanium matrix play an important role in gen-
erating higher normal stresses and lower plastic strains in the tri-material configuration.
Further, the presence of the SiC inclusions in the TBC/Ti-SiC configurations actually tends
to lower the magnitudes of plastic strains in the matrix regions in both representative cross-
sections relative to the pronounced plastic strains observed in the bi-material plate. Thus
the normal stress reduction in the matrix phase adjacent to the ceramic coating in the
TBC/Ti-SiC configurations observed in Fig. 16 is not caused by additional plasticity. This
reduction is most likely due to a thermal strain relief caused by the presence of the discrete
SiC inclusions with a smaller thermal expansion coefficient than the titanium matrix.
Figure 18 presents the inplane force and moment resultants for the configurations
whose normal stress distributions have been given in Fig. 16. The results are normalized by
the inplane force and moment resultants obtained for the TBC/Ti bi-material plate in order
to demonstrate the effect of the two-phase microstructure of the Ti-SiC region on these
quantities. Since the SiC inclusions are stiffer relative to the titanium matrix, the inplane
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Fig. 16. Comparison between through-the-thickness normal stress ¢,, obtained with the inelastic
analysis for the thermally-protected composite configurations in: (a) the cross-section containing
both phases; (b) the cross-section containing matrix only.
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resultant N, (and thus N;) increases in the presence of the inclusion phase. More signifi-
cantly, however, the presence of the SiC inclusions lowers the moment resultant M, (and
thus M) relative to that of the TBC/Ti bi-material plate. As mentioned previously, this
reduction is a direct result of a more favorable (i.e. more uniform) redistribution of the
normal stress g,, which better utilizes the load carrying capability of the matrix phase in
the regions exposed to lower temperatures (i.e. regions close to the bottom face of the
plate). The greatest reduction in the moment resultant occurs for the exponentially spaced
configuration with ¢ = 2 since this configuration produces a more uniform distribution of
0. Itis significant that the TBC/Ti/SiC tri-material plate configuration offers a very modest
reduction in the bending moment compared to that produced by both the uniformly and
exponentially spaced TBC/Ti-SiC configurations.

4. CONCLUSIONS

A previously developed theory for the elastic response of thin-walled, metal matrix
composites with a finite number of uniformly or nonuniformly spaced large-diameter fibers
in the thickness direction subjected to a thermal gradient has been extended herein to
include temperature-dependent inelastic behavior of the constituent phases. In this new
approach, the microstructural and macrostructural details are explicitly coupled when
solving the thermomechanical boundary-value problem. Coupling of local and global
analyses allows one to rationally analyze the response of metal matrix composites such
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Fig. 17. Comparison between through-the-thickness effective plastic strain &" obtained with the
inelastic analysis for the thermally-protected composite configurations in: (a) the cross-section
containing both phases ;( b) the cross-section containing matrix only.

as SiC/TiAl that contain relatively few through-the-thickness fibers, as well as so-called
functionally gradient composites with continuously changing properties due to nonuniform
fiber spacing or the presence of several phases. For such composites, it is difficult, if not
impossible, to define the representative volume element (RVE) used in the traditional
micromechanical analyses currently employed to analyze this class of emerging composites.
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Fig. 18. Inplane force and moment resultants for the thermally-protected composite plate con-
figurations normalized by the corresponding quantities obtained for the TBC/Ti bi-material plate.

The comparison of the internal stress and inplane force and moment resultants gen-
erated for SiC/TiAl composites using the elastic and inelastic models for the matrix phase
reveals substantial differences that depend on the applied temperature gradient, the ref-
erence temperature with respect to which temperature changes are measured, and the
fiber/inclusion distribution. As expected, matrix plasticity leads to a reduction in the normal
stress distribution in a localized region exposed to an elevated temperature, with virtually
identical normal stresses predicted by the inelastic and elastic analyses in the colder regions.
The extent of the plasticity-driven reduction in the normal stress increases with increasing
reference temperature applied to the cold surface of the plate, pointing to the importance
of temperature-dependent properties of the metallic phase. The resulting inplane force and
moment resultants are reduced proportionally, and in the case of the moment resultants
may in fact reverse sign at sufficiently high reference temperatures. This occurred for the
exponentially spaced configuration (with fibers concentrated near the cold surface) with
ten through-the-thickness fibers when the reference temperature at the bottom surface was
400°C.

The presented results also indicate that the effectiveness of thermal barrier coatings in
applications involving severe thermal gradients can be substantially increased by grading
the metallic substrate using particulate inclusions. The presence of the inclusion phase
produces a more favorable redistribution of the internal stress ficlds that more fully utilizes
the load bearing capability of the matrix phase in regions exposed to lower temperatures,
while potentially reducing the amount of plasticity in regions exposed to elevated tempera-
tures.
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APPENDIX

The non-zero strain coefficients ¢47) ,, in the Legendre polynomial representation of the strain field in eqn
(27) are given in terms of the displacement field microvariables of eqn (26) by :

(xfy) — At
0.0, = 7

/3
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The non-zero thermal stress coefficients t7¢%" in the Legendre polynomial representation of the thermal field

i)

in eqn (29) are given in terms of the temperature field microvariables 7¢# of eqn (3) by :
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